
Resit Exam — Analysis (WBMA012-05)

Thursday 13 April 2023, 8.30h–10.30h

University of Groningen

Instructions

1. The use of calculators, books, or notes is not allowed.

2. Provide clear arguments for all your answers: only answering “yes”, “no”, or “42”
is not sufficient. You may use all theorems and statements in the book, but you
should clearly indicate which of them you are using.

3. The total score for all questions equals 90. If p is the number of marks then the
exam grade is G = 1 + p/10.

Problem 1 (5 + 10 = 15 points)

Consider the set A =

{
6x− 5

3x+ 4
: x > 0

}
.

(a) Show that u = 2 is an upper bound for A.

(b) Prove that supA = 2.

Problem 2 (5 + 5 + 5 = 15 points)

Determine which of the following series converges or diverges. Motivate your answer!

(a)
∞∑
k=1

9k

3k + 6k
.

(b)
∞∑
k=1

√
k

k2 + 1
.

(c)
∞∑
k=1

(−1)k+1

pk
where pk is the k-th prime number (e.g. p1 = 2 and p6 = 13).

Problem 3 (3 + 3 + 9 = 15 points)

Let (an) be a convergent sequence and consider the set A = {an : n ∈ N}.

(a) Give an example of a convergent sequence (an) for which A is compact.

(b) Give an example of a convergent sequence (an) for which A is not compact.

(c) Let a = lim an. Show that K = A ∪ {a} is compact.

Please turn over for problems 4, 5, and 6!
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Problem 4 (15 points)

Consider the function f : R→ R given by:

f(x) =

{
0 if x ∈ Q,
x2 if x ∈ R \Q.

Prove that f is differentiable at x = 0 and that f ′(0) = 0.

Problem 5 (5 + 10 = 15 points)

Consider the following sequence of functions:

fn(x) =
n

nx+ 1
.

(a) Compute the pointwise limit for all x ∈ (0,∞).

(b) Let a > 0. Prove that the convergence is uniform on the interval [a,∞).

Problem 6 (3 + 12 = 15 points)

(a) Explain why the function f(x) = 1/(1 + x) is integrable on [0, 1] (e.g. by using a
suitable theorem).

(b) Use the partition P = {k/n : k = 0, . . . , n} to prove the following inequality:

1

n+ 1
+

1

n+ 2
+ · · ·+ 1

2n
≤ ln(2) for all n ∈ N.

End of test (90 points)

— Page 2 of 8 —



Solution of problem 1 (5 + 10 = 15 points)

(a) For x > 0 we have the following inequality:

6x− 5

3x+ 4
<

6x+ 8

3x+ 4
=

2(3x+ 4)

3x+ 4
= 2.

So for any a ∈ A we have shown that a < 2 which implies that u = 2 is an upper
bound for A.
(5 points)

(b) Method 1. Let u be any upper bound for A. Then for every n ∈ N we have

6n− 5

3n+ 4
≤ u.

(2 points)

By the Algebraic Limit Theorem it follows that

lim
6n− 5

3n+ 4
= lim

6− 5/n

3 + 4/n
=

lim(6− 5/n)

lim(3 + 4/n)
= 2.

(3 points)

By the Order Limit Theorem it follows that 2 ≤ u.
(3 points)

So we have shown that any upper bound u of A satisfies 2 ≤ u. By the definition of
supremum it follows that supA = 2.
(2 points)

Method 2. Let ε > 0 be arbitrary. For x > 0 we have the following equivalent
statements:

2− ε < 6x− 5

3x+ 4
⇔ (2− ε)(3x+ 4) < 6x− 5

⇔ 8− 4ε < 3εx− 5

⇔ 13− 4ε < 3εx

⇔ 13− 4ε

3ε
< x.

(5 points)

We conclude that for every ε > 0 there exists an element a ∈ A (namely, the element
a = (6x − 5)/(3x + 4) with x > (13 − 4ε)/3ε) such that 2 − ε < a. This shows that
any number u < 2 can is no longer an upper bound for A. Therefore, supA = 2 (we
have used Lemma 1.3.8 here).
(5 points)
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Solution of problem 2 (5 + 5 + 5 = 15 points)

(a) Method 1. For all k ∈ N we have the following inequality:

9k

3k + 6k
>

9k

6k + 6k
=

1

2

(
3

2

)k
.

This shows that the terms of the given series do not converge to zero and therefore
the series diverges.
(5 points)

Method 2. For all k ∈ N we have the following inequality:

9k

3k + 6k
>

9k

6k + 6k
=

1

2

(
3

2

)k
.

For r = 3/2 the geometric series
∑∞

k=1 r
k diverges. By the Comparison Test the given

series will diverge as well.
(5 points)

(b) For all k ∈ N we have the following inequality:

√
k

k2 + 1
<

√
k

k2
=

1

k3/2
.

In the lectures it was shown that any series of the form
∑∞

k=1 1/kp with p > 1
converges. Therefore, the Comparison Test implies that the given series converges as
well.
(5 points)

(c) If pk denotes k-th prime number, then the sequence ak = 1/pk satisfies 0 < ak+1 < ak
for all k ∈ N and lim ak = 0. By the Alternating Series Test the given series converges.
(5 points)
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Solution of problem 3 (3 + 3 + 9 = 15 points)

(a) Take, for example, the sequence (an) such that an = 0 for all n ∈ N. Clearly, this
sequence converges. We have that A = {0} is a finite set and in the lectures it was
proven that finite sets are compact.
(3 points)

Alternatives. Any constant sequence works. More generally, any eventually constant
sequence works too.

(b) Take, for example, the sequence an = 1/n. Clearly, the sequence (an) converges.
In this case, the set A = {1/n : n ∈ N} has x = 0 as a limit point which is not
contained in A. We conclude that for this example the set A is not closed and hence
not compact.
(3 points)

(c) Let Oλ, with λ ∈ Λ, be an open cover for the set K. Then for some λ0 ∈ Λ we have
that a ∈ Oλ0 .
(1 point)

Since Oλ0 is open there exists ε > 0 such that Vε(a) ⊆ Oλ0 .
(2 points)

Since lim an = a there exists N ∈ N such that for all n ≥ N we have |an − a| < ε, or,
equivalently, an ∈ Vε(a).
(2 points)

Since the sets Oλ cover the set K, it follows that for the remaining indices i =
1, 2, . . . , N − 1 there exists a set Oλi such that ai ∈ Oλi .
(2 points)

Finally, we conclude that K ⊆ Oλ0 ∪ Oλ1 ∪ · · · ∪ OλN−1
. This shows that any open

cover for A has a finite subcover and thus that A is compact.
(2 points)

— Page 5 of 8 —



Solution of problem 4 (15 points)

For all x 6= 0 we have that

f(x)− f(0)

x− 0
=

{
0 if x ∈ Q,
x if x ∈ R \Q.

(3 points)

This gives the following inequality for all x 6= 0:∣∣∣∣f(x)− f(0)

x− 0

∣∣∣∣ ≤ |x|
(3 points)

Let ε > 0 be arbitrary and take δ = ε. Then we have the following implication:

0 < |x− 0| < δ ⇒
∣∣∣∣f(x)− f(0)

x− 0

∣∣∣∣ ≤ |x− 0| < δ = ε.

This shows that f is differentiable at x = 0 and that f ′(0) = 0.
(9 points)
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Solution of problem 5 (5 + 10 = 15 points)

(a) Let x ∈ (0,∞) be fixed. By the Algebraic Limit Theorem it follows that

lim fn(x) = lim
n

nx+ 1
= lim

1

x+ 1/n
=

1

lim(x+ 1/n)
=

1

x+ lim 1/n
=

1

x
.

(5 points)

(b) We have

|fn(x)− f(x)| =
∣∣∣∣ n

nx+ 1
− 1

x

∣∣∣∣ =

∣∣∣∣ nx

x(nx+ 1)
− nx+ 1

x(nx+ 1)

∣∣∣∣ =
1

x(nx+ 1)
.

(3 points)

There are now at least two ways to finish the argument.

Method 1. Let a > 0 be fixed. If x ∈ [a,∞), then x(nx + 1) ≥ a(na + 1) > na2 so
that

|fn(x)− f(x)| < 1

na2
∀x ∈ [a,∞).

(2 points)

For ε > 0 there exists N ∈ N such that 1/N < a2ε. Hence,

n ≥ N ⇒ |fn(x)− f(x)| < 1

na2
≤ 1

Na2
< ε ∀x ∈ [a,∞).

This shows that fn → f uniformly on [a,∞).
(5 points)

Method 2. Let a > 0 be fixed. We have

sup
x∈[a,∞)

|fn(x)− f(x)| = 1

a(na+ 1)
<

1

na2
,

(5 points)

This implies that

lim
n→∞

(
sup

x∈[a,∞)

|fn(x)− f(x)|
)

= 0.

This shows that fn → f uniformly on [a,∞).
(5 points)
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Solution of problem 6 (3 + 12 = 15 points)

(a) Method 1. The function is decreasing and in the lectures it has been shown that
decreasing functions are integrable.
(3 points)

Method 2. The function is continuous and in the lectures it has been shown that
continous functions are integrable.
(3 points)

(b) Since for F (x) = ln(1 + x) we have F ′(x) = 1/(1 + x), it follows by the Fundamental
Theorem of Calculus that∫ 1

0

1

1 + x
dx = ln(2)− ln(1) = ln(2).

(3 points)

Since f is decreasing it follows that

mk := inf{f(x) : x ∈ [xk−1, xk]} = f(xk).

(3 points)

For the partition P = {k/n : k = 0, . . . , n} we thus get the following lower sum

L(f, P ) =
n∑
k=1

mk(xk − xk−1)

=
n∑
k=1

f(xk)(xk − xk−1)

=
n∑
k=1

1

1 + k/n

(
k

n
− k − 1

n

)
=

n∑
k=1

1

n+ k
=

1

n+ 1
+

1

n+ 2
+ · · ·+ 1

2n
.

(5 points)

Finally, since L(f, P ) ≤
∫ 1

0
f for any partition P we obtain the desired inequality.

(1 point)
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